The TELEMAC-MASCARET system  trunk
vc11pp.f
Go to the documentation of this file.
1 ! *****************
2  SUBROUTINE vc11pp
3 ! *****************
4 !
5  &( xmul,sf,sg,f,g,x,y,z,
6  & ikle1,ikle2,ikle3,ikle4,ikle5,ikle6,nelem,nelmax,
7  & w1,w2,w3,w4,w5,w6 , icoord )
8 !
9 !***********************************************************************
10 ! BIEF V6P3 21/08/2010
11 !***********************************************************************
12 !
13 !brief COMPUTES THE FOLLOWING VECTOR IN FINITE ELEMENTS:
14 !code
15 !+ (EXAMPLE OF THE X COMPONENT, WHICH CORRESPONDS TO ICOORD=1)
16 !+
17 !+ / DF
18 !+ VEC(I) = XMUL / ( G P *( -- )) D(OMEGA)
19 !+ /OMEGA I DX
20 !+
21 !+
22 !+ P IS A LINEAR BASE
23 !+ I
24 !+
25 !+ F IS A VECTOR OF TYPE P1 OR OTHER
26 !
27 !note IMPORTANT : IF F IS OF TYPE P0, THE RESULT IS 0.
28 !+
29 !+ HERE, IF F IS P0, IT REALLY MEANS THAT F IS
30 !+ P1, BUT GIVEN BY ELEMENTS.
31 !+
32 !+ THE SIZE OF F SHOULD THEN BE : F(NELMAX,3).
33 !
34 !warning THE JACOBIAN MUST BE POSITIVE
35 !warning THE RESULT IS IN W IN NOT ASSEMBLED FORM - REAL MESH
36 !
37 !history J-M HERVOUET (LNH) ; F LEPEINTRE (LNH)
38 !+ 09/12/94
39 !+ V5P1
40 !+
41 !
42 !history ARNAUD DESITTER - UNIVERSITY OF BRISTOL
43 !+ **/04/98
44 !+
45 !+
46 !
47 !history N.DURAND (HRW), S.E.BOURBAN (HRW)
48 !+ 13/07/2010
49 !+ V6P0
50 !+ Translation of French comments within the FORTRAN sources into
51 !+ English comments
52 !
53 !history N.DURAND (HRW), S.E.BOURBAN (HRW)
54 !+ 21/08/2010
55 !+ V6P0
56 !+ Creation of DOXYGEN tags for automated documentation and
57 !+ cross-referencing of the FORTRAN sources
58 !
59 !history J-M HERVOUET (EDF R&D LNHE)
60 !+ 07/01/2013
61 !+ V6P3
62 !+ X and Y are now given per element.
63 !
64 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
65 !| F |-->| FUNCTION USED IN THE VECTOR FORMULA
66 !| G |-->| FUNCTION USED IN THE VECTOR FORMULA
67 !| ICOORD |-->| 1: DERIVATIVE ALONG X, 2: ALONG Y
68 !| IKLE1 |-->| FIRST POINT OF PRISMS
69 !| IKLE2 |-->| SECOND POINT OF PRISMS
70 !| IKLE3 |-->| THIRD POINT OF PRISMS
71 !| IKLE4 |-->| FOURTH POINT OF PRISMS
72 !| IKLE5 |-->| FIFTH POINT OF PRISMS
73 !| IKLE6 |-->| SIXTH POINT OF PRISMS
74 !| NELEM |-->| NUMBER OF ELEMENTS
75 !| NELMAX |-->| MAXIMUM NUMBER OF ELEMENTS
76 !| SF |-->| BIEF_OBJ STRUCTURE OF F
77 !| SG |-->| BIEF_OBJ STRUCTURE OF G
78 !| SURFAC |-->| AREA OF TRIANGLES
79 !| W1 |<--| RESULT IN NON ASSEMBLED FORM
80 !| W2 |<--| RESULT IN NON ASSEMBLED FORM
81 !| W3 |<--| RESULT IN NON ASSEMBLED FORM
82 !| W4 |<--| RESULT IN NON ASSEMBLED FORM
83 !| W5 |<--| RESULT IN NON ASSEMBLED FORM
84 !| W6 |<--| RESULT IN NON ASSEMBLED FORM
85 !| XEL |-->| ABSCISSAE OF POINTS IN THE MESH, PER ELEMENT
86 !| XMUL |-->| MULTIPLICATION COEFFICIENT
87 !| YEL |-->| ORDINATES OF POINTS IN THE MESH, PER ELEMENT
88 !~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
89 !
90  USE bief, ex_vc11pp => vc11pp
91 !
93  IMPLICIT NONE
94 !
95 !+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
96 !
97  INTEGER, INTENT(IN) :: NELEM,NELMAX,ICOORD
98  INTEGER, INTENT(IN) :: IKLE1(nelmax),IKLE2(nelmax),IKLE3(nelmax)
99  INTEGER, INTENT(IN) :: IKLE4(nelmax),IKLE5(nelmax),IKLE6(nelmax)
100 !
101  DOUBLE PRECISION, INTENT(IN) :: X(nelmax,6),Y(nelmax,6),Z(*)
102  DOUBLE PRECISION, INTENT(IN) :: XMUL
103  DOUBLE PRECISION, INTENT(INOUT):: W1(nelmax),W2(nelmax),W3(nelmax)
104  DOUBLE PRECISION, INTENT(INOUT):: W4(nelmax),W5(nelmax),W6(nelmax)
105 !
106 ! STRUCTURES OF F, G, H, U, V, W AND REAL DATA
107 !
108  TYPE(bief_obj) :: SF,SG
109  DOUBLE PRECISION F(*),G(*)
110 !
111 !+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
112 !
113  INTEGER IELEM,IELMF,IELMG
114  DOUBLE PRECISION F1,F2,F3,F4,F5,F6,G1,G2,G3,G4,G5,G6
115  DOUBLE PRECISION S3,S4,S5,S6,X2,X3,Y2,Y3,Z1,Z2,Z3,Z4,Z5,Z6
116  INTEGER I1,I2,I3,I4,I5,I6
117 !
118  DOUBLE PRECISION XS1440,XS720,XMU
119 !
120 !-----------------------------------------------------------------------
121 !
122 ! INITIALISES
123 !
124  xs1440 = xmul/1440.d0
125  xs720 = xmul/720.d0
126 !
127  ielmf = sf%ELM
128  ielmg = sg%ELM
129 !
130 !-----------------------------------------------------------------------
131 !
132 ! F AND G ARE LINEAR
133 !
134  IF (ielmf.EQ.41.AND.ielmg.EQ.41) THEN
135 !
136  IF (icoord.EQ.1) THEN
137 !
138 !-----------------------------------------------------------------------
139 ! DERIVATIVE WRT X
140 !
141  DO ielem = 1 , nelem
142 !
143  i1 = ikle1(ielem)
144  i2 = ikle2(ielem)
145  i3 = ikle3(ielem)
146  i4 = ikle4(ielem)
147  i5 = ikle5(ielem)
148  i6 = ikle6(ielem)
149 !
150  f1 = f(i1)
151  f2 = f(i2)
152  f3 = f(i3)
153  f4 = f(i4)
154  f5 = f(i5)
155  f6 = f(i6)
156 !
157  g1 = g(i1)
158  g2 = g(i2)
159  g3 = g(i3)
160  g4 = g(i4)
161  g5 = g(i5)
162  g6 = g(i6)
163 !
164 ! REAL COORDINATES OF THE POINTS OF THE ELEMENT (ORIGIN IN 1)
165 !
166 ! Y2 = Y(I2) - Y(I1)
167 ! Y3 = Y(I3) - Y(I1)
168 !
169  y2 = y(ielem,2)
170  y3 = y(ielem,3)
171 !
172  z1 = z(i1)
173  z2 = z(i2)
174  z3 = z(i3)
175  z4 = z(i4)
176  z5 = z(i5)
177  z6 = z(i6)
178 !
179 ! VC11PP_X (FROM MAPLE)
180 !
181  s3 = ((-24*g1-12*g2-9*g3-8*g4-4*g5-3*g6)*f2+(-6*g1-3*g2-6*g3-2*g4-
182  &g5-2*g6)*f3+(24*g1+8*g2+8*g3+12*g4+4*g5+4*g6)*f4+(4*g2+g3-4*g4-g6)
183  &*f5+(6*g1+3*g2+6*g3+2*g4+g5+2*g6)*f6)*z1+((24*g1+12*g2+9*g3+8*g4+4
184  &*g5+3*g6)*f1+(6*g1+3*g2+6*g3+2*g4+g5+2*g6)*f3+(-16*g1-4*g2-5*g3-4*
185  &g4-g6)*f4+(-8*g1-8*g2-4*g3-4*g4-4*g5-2*g6)*f5+(-6*g1-3*g2-6*g3-2*g
186  &4-g5-2*g6)*f6)*z2+((6*g1+3*g2+6*g3+2*g4+g5+2*g6)*f1+(-6*g1-3*g2-6*
187  &g3-2*g4-g5-2*g6)*f2+(2*g1+g2+2*g3+2*g4+g5+2*g6)*f4+(-2*g1-g2-2*g3-
188  &2*g4-g5-2*g6)*f5)*z3
189  s4 = ((-24*g1-8*g2-8*g3-12*g4-4*g5-4*g6)*f1+(16*g1+4*g2+5*g3+4*
190  &g4+g6)*f2+(-2*g1-g2-2*g3-2*g4-g5-2*g6)*f3+(8*g1+4*g2+3*g3+8*g4+4*g
191  &5+3*g6)*f5+(2*g1+g2+2*g3+2*g4+g5+2*g6)*f6)*z4+((-4*g2-g3+4*g4+g6)*
192  &f1+(8*g1+8*g2+4*g3+4*g4+4*g5+2*g6)*f2+(2*g1+g2+2*g3+2*g4+g5+2*g6)*
193  &f3+(-8*g1-4*g2-3*g3-8*g4-4*g5-3*g6)*f4+(-2*g1-g2-2*g3-2*g4-g5-2*g6
194  &)*f6)*z5+((-6*g1-3*g2-6*g3-2*g4-g5-2*g6)*f1+(6*g1+3*g2+6*g3+2*g4+g
195  &5+2*g6)*f2+(-2*g1-g2-2*g3-2*g4-g5-2*g6)*f4+(2*g1+g2+2*g3+2*g4+g5+2
196  &*g6)*f5)*z6
197  s6 = ((6*g1+6*g2+3*g3+2*g4+2*g5+g6)*f2+(24*g1+9*g2+12*g3+8*g4+3*g5
198  &+4*g6)*f3+(-24*g1-8*g2-8*g3-12*g4-4*g5-4*g6)*f4+(-6*g1-6*g2-3*g3-2
199  &*g4-2*g5-g6)*f5+(-g2-4*g3+4*g4+g5)*f6)*z1+((-6*g1-6*g2-3*g3-2*g4-2
200  &*g5-g6)*f1+(6*g1+6*g2+3*g3+2*g4+2*g5+g6)*f3+(-2*g1-2*g2-g3-2*g4-2*
201  &g5-g6)*f4+(2*g1+2*g2+g3+2*g4+2*g5+g6)*f6)*z2+((-24*g1-9*g2-12*g3-8
202  &*g4-3*g5-4*g6)*f1+(-6*g1-6*g2-3*g3-2*g4-2*g5-g6)*f2+(16*g1+5*g2+4*
203  &g3+4*g4+g5)*f4+(6*g1+6*g2+3*g3+2*g4+2*g5+g6)*f5+(8*g1+4*g2+8*g3+4*
204  &g4+2*g5+4*g6)*f6)*z3
205  s5 = ((24*g1+8*g2+8*g3+12*g4+4*g5+4*g6)*f1+(2*g1+2*g2+g3+2*g4+2
206  &*g5+g6)*f2+(-16*g1-5*g2-4*g3-4*g4-g5)*f3+(-2*g1-2*g2-g3-2*g4-2*g5-
207  &g6)*f5+(-8*g1-3*g2-4*g3-8*g4-3*g5-4*g6)*f6)*z4+((6*g1+6*g2+3*g3+2*
208  &g4+2*g5+g6)*f1+(-6*g1-6*g2-3*g3-2*g4-2*g5-g6)*f3+(2*g1+2*g2+g3+2*g
209  &4+2*g5+g6)*f4+(-2*g1-2*g2-g3-2*g4-2*g5-g6)*f6)*z5+((g2+4*g3-4*g4-g
210  &5)*f1+(-2*g1-2*g2-g3-2*g4-2*g5-g6)*f2+(-8*g1-4*g2-8*g3-4*g4-2*g5-4
211  &*g6)*f3+(8*g1+3*g2+4*g3+8*g4+3*g5+4*g6)*f4+(2*g1+2*g2+g3+2*g4+2*g5
212  &+g6)*f5)*z6
213  w1(ielem) = ((s3+s4)*y3+(s6+s5)*y2)*xs1440
214 !
215  s3 = ((-12*g1-24*g2-9*g3-4*g4-8*g5-3*g6)*f2+(-3*g1-6*g2-6*g3-g4-2*
216  &g5-2*g6)*f3+(8*g1+8*g2+4*g3+4*g4+4*g5+2*g6)*f4+(4*g1+16*g2+5*g3+4*
217  &g5+g6)*f5+(3*g1+6*g2+6*g3+g4+2*g5+2*g6)*f6)*z1+((12*g1+24*g2+9*g3+
218  &4*g4+8*g5+3*g6)*f1+(3*g1+6*g2+6*g3+g4+2*g5+2*g6)*f3+(-4*g1-g3+4*g5
219  &+g6)*f4+(-8*g1-24*g2-8*g3-4*g4-12*g5-4*g6)*f5+(-3*g1-6*g2-6*g3-g4-
220  &2*g5-2*g6)*f6)*z2+((3*g1+6*g2+6*g3+g4+2*g5+2*g6)*f1+(-3*g1-6*g2-6*
221  &g3-g4-2*g5-2*g6)*f2+(g1+2*g2+2*g3+g4+2*g5+2*g6)*f4+(-g1-2*g2-2*g3-
222  &g4-2*g5-2*g6)*f5)*z3
223  s4 = ((-8*g1-8*g2-4*g3-4*g4-4*g5-2*g6)*f1+(4*g1+g3-4*g5-g6)*f2+
224  &(-g1-2*g2-2*g3-g4-2*g5-2*g6)*f3+(4*g1+8*g2+3*g3+4*g4+8*g5+3*g6)*f5
225  &+(g1+2*g2+2*g3+g4+2*g5+2*g6)*f6)*z4+((-4*g1-16*g2-5*g3-4*g5-g6)*f1
226  &+(8*g1+24*g2+8*g3+4*g4+12*g5+4*g6)*f2+(g1+2*g2+2*g3+g4+2*g5+2*g6)*
227  &f3+(-4*g1-8*g2-3*g3-4*g4-8*g5-3*g6)*f4+(-g1-2*g2-2*g3-g4-2*g5-2*g6
228  &)*f6)*z5+((-3*g1-6*g2-6*g3-g4-2*g5-2*g6)*f1+(3*g1+6*g2+6*g3+g4+2*g
229  &5+2*g6)*f2+(-g1-2*g2-2*g3-g4-2*g5-2*g6)*f4+(g1+2*g2+2*g3+g4+2*g5+2
230  &*g6)*f5)*z6
231  s6 = ((6*g1+18*g2+6*g3+2*g4+6*g5+2*g6)*f2+(9*g1+12*g2+9*g3+3*g4+4*
232  &g5+3*g6)*f3+(-8*g1-8*g2-4*g3-4*g4-4*g5-2*g6)*f4+(-6*g1-18*g2-6*g3-
233  &2*g4-6*g5-2*g6)*f5+(-g1-4*g2-5*g3+g4-g6)*f6)*z1+((-6*g1-18*g2-6*g3
234  &-2*g4-6*g5-2*g6)*f1+(6*g1+18*g2+6*g3+2*g4+6*g5+2*g6)*f3+(-2*g1-6*g
235  &2-2*g3-2*g4-6*g5-2*g6)*f4+(2*g1+6*g2+2*g3+2*g4+6*g5+2*g6)*f6)*z2+(
236  &(-9*g1-12*g2-9*g3-3*g4-4*g5-3*g6)*f1+(-6*g1-18*g2-6*g3-2*g4-6*g5-2
237  &*g6)*f2+(5*g1+4*g2+g3+g4-g6)*f4+(6*g1+18*g2+6*g3+2*g4+6*g5+2*g6)*f
238  &5+(4*g1+8*g2+8*g3+2*g4+4*g5+4*g6)*f6)*z3
239  s5 = ((8*g1+8*g2+4*g3+4*g4+4*g5+2*g6)*f1+(2*g1+6*g2+2*g3+2*g4+6
240  &*g5+2*g6)*f2+(-5*g1-4*g2-g3-g4+g6)*f3+(-2*g1-6*g2-2*g3-2*g4-6*g5-2
241  &*g6)*f5+(-3*g1-4*g2-3*g3-3*g4-4*g5-3*g6)*f6)*z4+((6*g1+18*g2+6*g3+
242  &2*g4+6*g5+2*g6)*f1+(-6*g1-18*g2-6*g3-2*g4-6*g5-2*g6)*f3+(2*g1+6*g2
243  &+2*g3+2*g4+6*g5+2*g6)*f4+(-2*g1-6*g2-2*g3-2*g4-6*g5-2*g6)*f6)*z5+(
244  &(g1+4*g2+5*g3-g4+g6)*f1+(-2*g1-6*g2-2*g3-2*g4-6*g5-2*g6)*f2+(-4*g1
245  &-8*g2-8*g3-2*g4-4*g5-4*g6)*f3+(3*g1+4*g2+3*g3+3*g4+4*g5+3*g6)*f4+(
246  &2*g1+6*g2+2*g3+2*g4+6*g5+2*g6)*f5)*z6
247  w2(ielem) = ((s3+s4)*y3+(s6+s5)*y2)*xs1440
248 !
249  s3 = ((-9*g1-9*g2-12*g3-3*g4-3*g5-4*g6)*f2+(-6*g1-6*g2-18*g3-2*g4-
250  &2*g5-6*g6)*f3+(8*g1+4*g2+8*g3+4*g4+2*g5+4*g6)*f4+(g1+5*g2+4*g3-g4+
251  &g5)*f5+(6*g1+6*g2+18*g3+2*g4+2*g5+6*g6)*f6)*z1+((9*g1+9*g2+12*g3+3
252  &*g4+3*g5+4*g6)*f1+(6*g1+6*g2+18*g3+2*g4+2*g5+6*g6)*f3+(-5*g1-g2-4*
253  &g3-g4+g5)*f4+(-4*g1-8*g2-8*g3-2*g4-4*g5-4*g6)*f5+(-6*g1-6*g2-18*g3
254  &-2*g4-2*g5-6*g6)*f6)*z2+((6*g1+6*g2+18*g3+2*g4+2*g5+6*g6)*f1+(-6*g
255  &1-6*g2-18*g3-2*g4-2*g5-6*g6)*f2+(2*g1+2*g2+6*g3+2*g4+2*g5+6*g6)*f4
256  &+(-2*g1-2*g2-6*g3-2*g4-2*g5-6*g6)*f5)*z3
257  s4 = ((-8*g1-4*g2-8*g3-4*g4-2*g5-4*g6)*f1+(5*g1+g2+4*g3+g4-g5)*
258  &f2+(-2*g1-2*g2-6*g3-2*g4-2*g5-6*g6)*f3+(3*g1+3*g2+4*g3+3*g4+3*g5+4
259  &*g6)*f5+(2*g1+2*g2+6*g3+2*g4+2*g5+6*g6)*f6)*z4+((-g1-5*g2-4*g3+g4-
260  &g5)*f1+(4*g1+8*g2+8*g3+2*g4+4*g5+4*g6)*f2+(2*g1+2*g2+6*g3+2*g4+2*g
261  &5+6*g6)*f3+(-3*g1-3*g2-4*g3-3*g4-3*g5-4*g6)*f4+(-2*g1-2*g2-6*g3-2*
262  &g4-2*g5-6*g6)*f6)*z5+((-6*g1-6*g2-18*g3-2*g4-2*g5-6*g6)*f1+(6*g1+6
263  &*g2+18*g3+2*g4+2*g5+6*g6)*f2+(-2*g1-2*g2-6*g3-2*g4-2*g5-6*g6)*f4+(
264  &2*g1+2*g2+6*g3+2*g4+2*g5+6*g6)*f5)*z6
265  s6 = ((3*g1+6*g2+6*g3+g4+2*g5+2*g6)*f2+(12*g1+9*g2+24*g3+4*g4+3*g5
266  &+8*g6)*f3+(-8*g1-4*g2-8*g3-4*g4-2*g5-4*g6)*f4+(-3*g1-6*g2-6*g3-g4-
267  &2*g5-2*g6)*f5+(-4*g1-5*g2-16*g3-g5-4*g6)*f6)*z1+((-3*g1-6*g2-6*g3-
268  &g4-2*g5-2*g6)*f1+(3*g1+6*g2+6*g3+g4+2*g5+2*g6)*f3+(-g1-2*g2-2*g3-g
269  &4-2*g5-2*g6)*f4+(g1+2*g2+2*g3+g4+2*g5+2*g6)*f6)*z2+((-12*g1-9*g2-2
270  &4*g3-4*g4-3*g5-8*g6)*f1+(-3*g1-6*g2-6*g3-g4-2*g5-2*g6)*f2+(4*g1+g2
271  &-g5-4*g6)*f4+(3*g1+6*g2+6*g3+g4+2*g5+2*g6)*f5+(8*g1+8*g2+24*g3+4*g
272  &4+4*g5+12*g6)*f6)*z3
273  s5 = ((8*g1+4*g2+8*g3+4*g4+2*g5+4*g6)*f1+(g1+2*g2+2*g3+g4+2*g5+
274  &2*g6)*f2+(-4*g1-g2+g5+4*g6)*f3+(-g1-2*g2-2*g3-g4-2*g5-2*g6)*f5+(-4
275  &*g1-3*g2-8*g3-4*g4-3*g5-8*g6)*f6)*z4+((3*g1+6*g2+6*g3+g4+2*g5+2*g6
276  &)*f1+(-3*g1-6*g2-6*g3-g4-2*g5-2*g6)*f3+(g1+2*g2+2*g3+g4+2*g5+2*g6)
277  &*f4+(-g1-2*g2-2*g3-g4-2*g5-2*g6)*f6)*z5+((4*g1+5*g2+16*g3+g5+4*g6)
278  &*f1+(-g1-2*g2-2*g3-g4-2*g5-2*g6)*f2+(-8*g1-8*g2-24*g3-4*g4-4*g5-12
279  &*g6)*f3+(4*g1+3*g2+8*g3+4*g4+3*g5+8*g6)*f4+(g1+2*g2+2*g3+g4+2*g5+2
280  &*g6)*f5)*z6
281  w3(ielem) = ((s3+s4)*y3+(s6+s5)*y2)*xs1440
282 !
283  s3 = ((-8*g1-4*g2-3*g3-8*g4-4*g5-3*g6)*f2+(-2*g1-g2-2*g3-2*g4-g5-2
284  &*g6)*f3+(12*g1+4*g2+4*g3+24*g4+8*g5+8*g6)*f4+(-4*g1-g3-16*g4-4*g5-
285  &5*g6)*f5+(2*g1+g2+2*g3+2*g4+g5+2*g6)*f6)*z1+((8*g1+4*g2+3*g3+8*g4+
286  &4*g5+3*g6)*f1+(2*g1+g2+2*g3+2*g4+g5+2*g6)*f3+(-4*g1-g3+4*g5+g6)*f4
287  &+(-4*g1-4*g2-2*g3-8*g4-8*g5-4*g6)*f5+(-2*g1-g2-2*g3-2*g4-g5-2*g6)*
288  &f6)*z2+((2*g1+g2+2*g3+2*g4+g5+2*g6)*f1+(-2*g1-g2-2*g3-2*g4-g5-2*g6
289  &)*f2+(2*g1+g2+2*g3+6*g4+3*g5+6*g6)*f4+(-2*g1-g2-2*g3-6*g4-3*g5-6*g
290  &6)*f5)*z3
291  s4 = ((-12*g1-4*g2-4*g3-24*g4-8*g5-8*g6)*f1+(4*g1+g3-4*g5-g6)*f
292  &2+(-2*g1-g2-2*g3-6*g4-3*g5-6*g6)*f3+(8*g1+4*g2+3*g3+24*g4+12*g5+9*
293  &g6)*f5+(2*g1+g2+2*g3+6*g4+3*g5+6*g6)*f6)*z4+((4*g1+g3+16*g4+4*g5+5
294  &*g6)*f1+(4*g1+4*g2+2*g3+8*g4+8*g5+4*g6)*f2+(2*g1+g2+2*g3+6*g4+3*g5
295  &+6*g6)*f3+(-8*g1-4*g2-3*g3-24*g4-12*g5-9*g6)*f4+(-2*g1-g2-2*g3-6*g
296  &4-3*g5-6*g6)*f6)*z5+((-2*g1-g2-2*g3-2*g4-g5-2*g6)*f1+(2*g1+g2+2*g3
297  &+2*g4+g5+2*g6)*f2+(-2*g1-g2-2*g3-6*g4-3*g5-6*g6)*f4+(2*g1+g2+2*g3+
298  &6*g4+3*g5+6*g6)*f5)*z6
299  s6 = ((2*g1+2*g2+g3+2*g4+2*g5+g6)*f2+(8*g1+3*g2+4*g3+8*g4+3*g5+4*g
300  &6)*f3+(-12*g1-4*g2-4*g3-24*g4-8*g5-8*g6)*f4+(-2*g1-2*g2-g3-2*g4-2*
301  &g5-g6)*f5+(4*g1+g2+16*g4+5*g5+4*g6)*f6)*z1+((-2*g1-2*g2-g3-2*g4-2*
302  &g5-g6)*f1+(2*g1+2*g2+g3+2*g4+2*g5+g6)*f3+(-2*g1-2*g2-g3-6*g4-6*g5-
303  &3*g6)*f4+(2*g1+2*g2+g3+6*g4+6*g5+3*g6)*f6)*z2+((-8*g1-3*g2-4*g3-8*
304  &g4-3*g5-4*g6)*f1+(-2*g1-2*g2-g3-2*g4-2*g5-g6)*f2+(4*g1+g2-g5-4*g6)
305  &*f4+(2*g1+2*g2+g3+2*g4+2*g5+g6)*f5+(4*g1+2*g2+4*g3+8*g4+4*g5+8*g6)
306  &*f6)*z3
307  s5 = ((12*g1+4*g2+4*g3+24*g4+8*g5+8*g6)*f1+(2*g1+2*g2+g3+6*g4+6
308  &*g5+3*g6)*f2+(-4*g1-g2+g5+4*g6)*f3+(-2*g1-2*g2-g3-6*g4-6*g5-3*g6)*
309  &f5+(-8*g1-3*g2-4*g3-24*g4-9*g5-12*g6)*f6)*z4+((2*g1+2*g2+g3+2*g4+2
310  &*g5+g6)*f1+(-2*g1-2*g2-g3-2*g4-2*g5-g6)*f3+(2*g1+2*g2+g3+6*g4+6*g5
311  &+3*g6)*f4+(-2*g1-2*g2-g3-6*g4-6*g5-3*g6)*f6)*z5+((-4*g1-g2-16*g4-5
312  &*g5-4*g6)*f1+(-2*g1-2*g2-g3-6*g4-6*g5-3*g6)*f2+(-4*g1-2*g2-4*g3-8*
313  &g4-4*g5-8*g6)*f3+(8*g1+3*g2+4*g3+24*g4+9*g5+12*g6)*f4+(2*g1+2*g2+g
314  &3+6*g4+6*g5+3*g6)*f5)*z6
315  w4(ielem) = ((s3+s4)*y3+(s6+s5)*y2)*xs1440
316 !
317  s3 = ((-4*g1-8*g2-3*g3-4*g4-8*g5-3*g6)*f2+(-g1-2*g2-2*g3-g4-2*g5-2
318  &*g6)*f3+(4*g1+4*g2+2*g3+8*g4+8*g5+4*g6)*f4+(4*g2+g3-4*g4-g6)*f5+(g
319  &1+2*g2+2*g3+g4+2*g5+2*g6)*f6)*z1+((4*g1+8*g2+3*g3+4*g4+8*g5+3*g6)*
320  &f1+(g1+2*g2+2*g3+g4+2*g5+2*g6)*f3+(4*g2+g3+4*g4+16*g5+5*g6)*f4+(-4
321  &*g1-12*g2-4*g3-8*g4-24*g5-8*g6)*f5+(-g1-2*g2-2*g3-g4-2*g5-2*g6)*f6
322  &)*z2+((g1+2*g2+2*g3+g4+2*g5+2*g6)*f1+(-g1-2*g2-2*g3-g4-2*g5-2*g6)*
323  &f2+(g1+2*g2+2*g3+3*g4+6*g5+6*g6)*f4+(-g1-2*g2-2*g3-3*g4-6*g5-6*g6)
324  &*f5)*z3
325  s4 = ((-4*g1-4*g2-2*g3-8*g4-8*g5-4*g6)*f1+(-4*g2-g3-4*g4-16*g5-
326  &5*g6)*f2+(-g1-2*g2-2*g3-3*g4-6*g5-6*g6)*f3+(4*g1+8*g2+3*g3+12*g4+2
327  &4*g5+9*g6)*f5+(g1+2*g2+2*g3+3*g4+6*g5+6*g6)*f6)*z4+((-4*g2-g3+4*g4
328  &+g6)*f1+(4*g1+12*g2+4*g3+8*g4+24*g5+8*g6)*f2+(g1+2*g2+2*g3+3*g4+6*
329  &g5+6*g6)*f3+(-4*g1-8*g2-3*g3-12*g4-24*g5-9*g6)*f4+(-g1-2*g2-2*g3-3
330  &*g4-6*g5-6*g6)*f6)*z5+((-g1-2*g2-2*g3-g4-2*g5-2*g6)*f1+(g1+2*g2+2*
331  &g3+g4+2*g5+2*g6)*f2+(-g1-2*g2-2*g3-3*g4-6*g5-6*g6)*f4+(g1+2*g2+2*g
332  &3+3*g4+6*g5+6*g6)*f5)*z6
333  s6 = ((2*g1+6*g2+2*g3+2*g4+6*g5+2*g6)*f2+(3*g1+4*g2+3*g3+3*g4+4*g5
334  &+3*g6)*f3+(-4*g1-4*g2-2*g3-8*g4-8*g5-4*g6)*f4+(-2*g1-6*g2-2*g3-2*g
335  &4-6*g5-2*g6)*f5+(g1-g3+5*g4+4*g5+g6)*f6)*z1+((-2*g1-6*g2-2*g3-2*g4
336  &-6*g5-2*g6)*f1+(2*g1+6*g2+2*g3+2*g4+6*g5+2*g6)*f3+(-2*g1-6*g2-2*g3
337  &-6*g4-18*g5-6*g6)*f4+(2*g1+6*g2+2*g3+6*g4+18*g5+6*g6)*f6)*z2+((-3*
338  &g1-4*g2-3*g3-3*g4-4*g5-3*g6)*f1+(-2*g1-6*g2-2*g3-2*g4-6*g5-2*g6)*f
339  &2+(g1-g3-g4-4*g5-5*g6)*f4+(2*g1+6*g2+2*g3+2*g4+6*g5+2*g6)*f5+(2*g1
340  &+4*g2+4*g3+4*g4+8*g5+8*g6)*f6)*z3
341  s5 = ((4*g1+4*g2+2*g3+8*g4+8*g5+4*g6)*f1+(2*g1+6*g2+2*g3+6*g4+1
342  &8*g5+6*g6)*f2+(-g1+g3+g4+4*g5+5*g6)*f3+(-2*g1-6*g2-2*g3-6*g4-18*g5
343  &-6*g6)*f5+(-3*g1-4*g2-3*g3-9*g4-12*g5-9*g6)*f6)*z4+((2*g1+6*g2+2*g
344  &3+2*g4+6*g5+2*g6)*f1+(-2*g1-6*g2-2*g3-2*g4-6*g5-2*g6)*f3+(2*g1+6*g
345  &2+2*g3+6*g4+18*g5+6*g6)*f4+(-2*g1-6*g2-2*g3-6*g4-18*g5-6*g6)*f6)*z
346  &5+((-g1+g3-5*g4-4*g5-g6)*f1+(-2*g1-6*g2-2*g3-6*g4-18*g5-6*g6)*f2+(
347  &-2*g1-4*g2-4*g3-4*g4-8*g5-8*g6)*f3+(3*g1+4*g2+3*g3+9*g4+12*g5+9*g6
348  &)*f4+(2*g1+6*g2+2*g3+6*g4+18*g5+6*g6)*f5)*z6
349  w5(ielem) = ((s3+s4)*y3+(s6+s5)*y2)*xs1440
350 !
351  s3 = ((-3*g1-3*g2-4*g3-3*g4-3*g5-4*g6)*f2+(-2*g1-2*g2-6*g3-2*g4-2*
352  &g5-6*g6)*f3+(4*g1+2*g2+4*g3+8*g4+4*g5+8*g6)*f4+(-g1+g2-5*g4-g5-4*g
353  &6)*f5+(2*g1+2*g2+6*g3+2*g4+2*g5+6*g6)*f6)*z1+((3*g1+3*g2+4*g3+3*g4
354  &+3*g5+4*g6)*f1+(2*g1+2*g2+6*g3+2*g4+2*g5+6*g6)*f3+(-g1+g2+g4+5*g5+
355  &4*g6)*f4+(-2*g1-4*g2-4*g3-4*g4-8*g5-8*g6)*f5+(-2*g1-2*g2-6*g3-2*g4
356  &-2*g5-6*g6)*f6)*z2+((2*g1+2*g2+6*g3+2*g4+2*g5+6*g6)*f1+(-2*g1-2*g2
357  &-6*g3-2*g4-2*g5-6*g6)*f2+(2*g1+2*g2+6*g3+6*g4+6*g5+18*g6)*f4+(-2*g
358  &1-2*g2-6*g3-6*g4-6*g5-18*g6)*f5)*z3
359  s4 = ((-4*g1-2*g2-4*g3-8*g4-4*g5-8*g6)*f1+(g1-g2-g4-5*g5-4*g6)*
360  &f2+(-2*g1-2*g2-6*g3-6*g4-6*g5-18*g6)*f3+(3*g1+3*g2+4*g3+9*g4+9*g5+
361  &12*g6)*f5+(2*g1+2*g2+6*g3+6*g4+6*g5+18*g6)*f6)*z4+((g1-g2+5*g4+g5+
362  &4*g6)*f1+(2*g1+4*g2+4*g3+4*g4+8*g5+8*g6)*f2+(2*g1+2*g2+6*g3+6*g4+6
363  &*g5+18*g6)*f3+(-3*g1-3*g2-4*g3-9*g4-9*g5-12*g6)*f4+(-2*g1-2*g2-6*g
364  &3-6*g4-6*g5-18*g6)*f6)*z5+((-2*g1-2*g2-6*g3-2*g4-2*g5-6*g6)*f1+(2*
365  &g1+2*g2+6*g3+2*g4+2*g5+6*g6)*f2+(-2*g1-2*g2-6*g3-6*g4-6*g5-18*g6)*
366  &f4+(2*g1+2*g2+6*g3+6*g4+6*g5+18*g6)*f5)*z6
367  s6 = ((g1+2*g2+2*g3+g4+2*g5+2*g6)*f2+(4*g1+3*g2+8*g3+4*g4+3*g5+8*g
368  &6)*f3+(-4*g1-2*g2-4*g3-8*g4-4*g5-8*g6)*f4+(-g1-2*g2-2*g3-g4-2*g5-2
369  &*g6)*f5+(-g2-4*g3+4*g4+g5)*f6)*z1+((-g1-2*g2-2*g3-g4-2*g5-2*g6)*f1
370  &+(g1+2*g2+2*g3+g4+2*g5+2*g6)*f3+(-g1-2*g2-2*g3-3*g4-6*g5-6*g6)*f4+
371  &(g1+2*g2+2*g3+3*g4+6*g5+6*g6)*f6)*z2+((-4*g1-3*g2-8*g3-4*g4-3*g5-8
372  &*g6)*f1+(-g1-2*g2-2*g3-g4-2*g5-2*g6)*f2+(-g2-4*g3-4*g4-5*g5-16*g6)
373  &*f4+(g1+2*g2+2*g3+g4+2*g5+2*g6)*f5+(4*g1+4*g2+12*g3+8*g4+8*g5+24*g
374  &6)*f6)*z3
375  s5 = ((4*g1+2*g2+4*g3+8*g4+4*g5+8*g6)*f1+(g1+2*g2+2*g3+3*g4+6*g
376  &5+6*g6)*f2+(g2+4*g3+4*g4+5*g5+16*g6)*f3+(-g1-2*g2-2*g3-3*g4-6*g5-6
377  &*g6)*f5+(-4*g1-3*g2-8*g3-12*g4-9*g5-24*g6)*f6)*z4+((g1+2*g2+2*g3+g
378  &4+2*g5+2*g6)*f1+(-g1-2*g2-2*g3-g4-2*g5-2*g6)*f3+(g1+2*g2+2*g3+3*g4
379  &+6*g5+6*g6)*f4+(-g1-2*g2-2*g3-3*g4-6*g5-6*g6)*f6)*z5+((g2+4*g3-4*g
380  &4-g5)*f1+(-g1-2*g2-2*g3-3*g4-6*g5-6*g6)*f2+(-4*g1-4*g2-12*g3-8*g4-
381  &8*g5-24*g6)*f3+(4*g1+3*g2+8*g3+12*g4+9*g5+24*g6)*f4+(g1+2*g2+2*g3+
382  &3*g4+6*g5+6*g6)*f5)*z6
383  w6(ielem) = ((s3+s4)*y3+(s6+s5)*y2)*xs1440
384 !
385  ENDDO
386 !
387  ELSE IF (icoord.EQ.2) THEN
388 !
389 !-----------------------------------------------------------------------
390 ! DERIVATIVE WRT Y
391 !
392  DO ielem = 1 , nelem
393 !
394  i1 = ikle1(ielem)
395  i2 = ikle2(ielem)
396  i3 = ikle3(ielem)
397  i4 = ikle4(ielem)
398  i5 = ikle5(ielem)
399  i6 = ikle6(ielem)
400 !
401  f1 = f(i1)
402  f2 = f(i2)
403  f3 = f(i3)
404  f4 = f(i4)
405  f5 = f(i5)
406  f6 = f(i6)
407 !
408  g1 = g(i1)
409  g2 = g(i2)
410  g3 = g(i3)
411  g4 = g(i4)
412  g5 = g(i5)
413  g6 = g(i6)
414 !
415 ! REAL COORDINATES OF THE POINTS OF THE ELEMENT (ORIGIN IN 1)
416 !
417 ! X2 = X(I2) - X(I1)
418 ! X3 = X(I3) - X(I1)
419 !
420  x2 = x(ielem,2)
421  x3 = x(ielem,3)
422 !
423  z1 = z(i1)
424  z2 = z(i2)
425  z3 = z(i3)
426  z4 = z(i4)
427  z5 = z(i5)
428  z6 = z(i6)
429 !
430 ! VC11PP_Y (FROM MAPLE)
431 !
432  s3 = ((24*g1+12*g2+9*g3+8*g4+4*g5+3*g6)*f2+(6*g1+3*g2+6*g3+2*g4+g5
433  &+2*g6)*f3+(-24*g1-8*g2-8*g3-12*g4-4*g5-4*g6)*f4+(-4*g2-g3+4*g4+g6)
434  &*f5+(-6*g1-3*g2-6*g3-2*g4-g5-2*g6)*f6)*z1+((-24*g1-12*g2-9*g3-8*g4
435  &-4*g5-3*g6)*f1+(-6*g1-3*g2-6*g3-2*g4-g5-2*g6)*f3+(16*g1+4*g2+5*g3+
436  &4*g4+g6)*f4+(8*g1+8*g2+4*g3+4*g4+4*g5+2*g6)*f5+(6*g1+3*g2+6*g3+2*g
437  &4+g5+2*g6)*f6)*z2+((-6*g1-3*g2-6*g3-2*g4-g5-2*g6)*f1+(6*g1+3*g2+6*
438  &g3+2*g4+g5+2*g6)*f2+(-2*g1-g2-2*g3-2*g4-g5-2*g6)*f4+(2*g1+g2+2*g3+
439  &2*g4+g5+2*g6)*f5)*z3
440  s4 = ((24*g1+8*g2+8*g3+12*g4+4*g5+4*g6)*f1+(-16*g1-4*g2-5*g3-4*
441  &g4-g6)*f2+(2*g1+g2+2*g3+2*g4+g5+2*g6)*f3+(-8*g1-4*g2-3*g3-8*g4-4*g
442  &5-3*g6)*f5+(-2*g1-g2-2*g3-2*g4-g5-2*g6)*f6)*z4+((4*g2+g3-4*g4-g6)*
443  &f1+(-8*g1-8*g2-4*g3-4*g4-4*g5-2*g6)*f2+(-2*g1-g2-2*g3-2*g4-g5-2*g6
444  &)*f3+(8*g1+4*g2+3*g3+8*g4+4*g5+3*g6)*f4+(2*g1+g2+2*g3+2*g4+g5+2*g6
445  &)*f6)*z5+((6*g1+3*g2+6*g3+2*g4+g5+2*g6)*f1+(-6*g1-3*g2-6*g3-2*g4-g
446  &5-2*g6)*f2+(2*g1+g2+2*g3+2*g4+g5+2*g6)*f4+(-2*g1-g2-2*g3-2*g4-g5-2
447  &*g6)*f5)*z6
448  s6 = ((-6*g1-6*g2-3*g3-2*g4-2*g5-g6)*f2+(-24*g1-9*g2-12*g3-8*g4-3*
449  &g5-4*g6)*f3+(24*g1+8*g2+8*g3+12*g4+4*g5+4*g6)*f4+(6*g1+6*g2+3*g3+2
450  &*g4+2*g5+g6)*f5+(g2+4*g3-4*g4-g5)*f6)*z1+((6*g1+6*g2+3*g3+2*g4+2*g
451  &5+g6)*f1+(-6*g1-6*g2-3*g3-2*g4-2*g5-g6)*f3+(2*g1+2*g2+g3+2*g4+2*g5
452  &+g6)*f4+(-2*g1-2*g2-g3-2*g4-2*g5-g6)*f6)*z2+((24*g1+9*g2+12*g3+8*g
453  &4+3*g5+4*g6)*f1+(6*g1+6*g2+3*g3+2*g4+2*g5+g6)*f2+(-16*g1-5*g2-4*g3
454  &-4*g4-g5)*f4+(-6*g1-6*g2-3*g3-2*g4-2*g5-g6)*f5+(-8*g1-4*g2-8*g3-4*
455  &g4-2*g5-4*g6)*f6)*z3
456  s5 = ((-24*g1-8*g2-8*g3-12*g4-4*g5-4*g6)*f1+(-2*g1-2*g2-g3-2*g4
457  &-2*g5-g6)*f2+(16*g1+5*g2+4*g3+4*g4+g5)*f3+(2*g1+2*g2+g3+2*g4+2*g5+
458  &g6)*f5+(8*g1+3*g2+4*g3+8*g4+3*g5+4*g6)*f6)*z4+((-6*g1-6*g2-3*g3-2*
459  &g4-2*g5-g6)*f1+(6*g1+6*g2+3*g3+2*g4+2*g5+g6)*f3+(-2*g1-2*g2-g3-2*g
460  &4-2*g5-g6)*f4+(2*g1+2*g2+g3+2*g4+2*g5+g6)*f6)*z5+((-g2-4*g3+4*g4+g
461  &5)*f1+(2*g1+2*g2+g3+2*g4+2*g5+g6)*f2+(8*g1+4*g2+8*g3+4*g4+2*g5+4*g
462  &6)*f3+(-8*g1-3*g2-4*g3-8*g4-3*g5-4*g6)*f4+(-2*g1-2*g2-g3-2*g4-2*g5
463  &-g6)*f5)*z6
464  w1(ielem) = ((s4+s3)*x3+(s5+s6)*x2)*xs1440
465 !
466  s3 = ((12*g1+24*g2+9*g3+4*g4+8*g5+3*g6)*f2+(3*g1+6*g2+6*g3+g4+2*g5
467  &+2*g6)*f3+(-8*g1-8*g2-4*g3-4*g4-4*g5-2*g6)*f4+(-4*g1-16*g2-5*g3-4*
468  &g5-g6)*f5+(-3*g1-6*g2-6*g3-g4-2*g5-2*g6)*f6)*z1+((-12*g1-24*g2-9*g
469  &3-4*g4-8*g5-3*g6)*f1+(-3*g1-6*g2-6*g3-g4-2*g5-2*g6)*f3+(4*g1+g3-4*
470  &g5-g6)*f4+(8*g1+24*g2+8*g3+4*g4+12*g5+4*g6)*f5+(3*g1+6*g2+6*g3+g4+
471  &2*g5+2*g6)*f6)*z2+((-3*g1-6*g2-6*g3-g4-2*g5-2*g6)*f1+(3*g1+6*g2+6*
472  &g3+g4+2*g5+2*g6)*f2+(-g1-2*g2-2*g3-g4-2*g5-2*g6)*f4+(g1+2*g2+2*g3+
473  &g4+2*g5+2*g6)*f5)*z3
474  s4 = ((8*g1+8*g2+4*g3+4*g4+4*g5+2*g6)*f1+(-4*g1-g3+4*g5+g6)*f2+
475  &(g1+2*g2+2*g3+g4+2*g5+2*g6)*f3+(-4*g1-8*g2-3*g3-4*g4-8*g5-3*g6)*f5
476  &+(-g1-2*g2-2*g3-g4-2*g5-2*g6)*f6)*z4+((4*g1+16*g2+5*g3+4*g5+g6)*f1
477  &+(-8*g1-24*g2-8*g3-4*g4-12*g5-4*g6)*f2+(-g1-2*g2-2*g3-g4-2*g5-2*g6
478  &)*f3+(4*g1+8*g2+3*g3+4*g4+8*g5+3*g6)*f4+(g1+2*g2+2*g3+g4+2*g5+2*g6
479  &)*f6)*z5+((3*g1+6*g2+6*g3+g4+2*g5+2*g6)*f1+(-3*g1-6*g2-6*g3-g4-2*g
480  &5-2*g6)*f2+(g1+2*g2+2*g3+g4+2*g5+2*g6)*f4+(-g1-2*g2-2*g3-g4-2*g5-2
481  &*g6)*f5)*z6
482  s6 = ((-6*g1-18*g2-6*g3-2*g4-6*g5-2*g6)*f2+(-9*g1-12*g2-9*g3-3*g4-
483  &4*g5-3*g6)*f3+(8*g1+8*g2+4*g3+4*g4+4*g5+2*g6)*f4+(6*g1+18*g2+6*g3+
484  &2*g4+6*g5+2*g6)*f5+(g1+4*g2+5*g3-g4+g6)*f6)*z1+((6*g1+18*g2+6*g3+2
485  &*g4+6*g5+2*g6)*f1+(-6*g1-18*g2-6*g3-2*g4-6*g5-2*g6)*f3+(2*g1+6*g2+
486  &2*g3+2*g4+6*g5+2*g6)*f4+(-2*g1-6*g2-2*g3-2*g4-6*g5-2*g6)*f6)*z2+((
487  &9*g1+12*g2+9*g3+3*g4+4*g5+3*g6)*f1+(6*g1+18*g2+6*g3+2*g4+6*g5+2*g6
488  &)*f2+(-5*g1-4*g2-g3-g4+g6)*f4+(-6*g1-18*g2-6*g3-2*g4-6*g5-2*g6)*f5
489  &+(-4*g1-8*g2-8*g3-2*g4-4*g5-4*g6)*f6)*z3
490  s5 = ((-8*g1-8*g2-4*g3-4*g4-4*g5-2*g6)*f1+(-2*g1-6*g2-2*g3-2*g4
491  &-6*g5-2*g6)*f2+(5*g1+4*g2+g3+g4-g6)*f3+(2*g1+6*g2+2*g3+2*g4+6*g5+2
492  &*g6)*f5+(3*g1+4*g2+3*g3+3*g4+4*g5+3*g6)*f6)*z4+((-6*g1-18*g2-6*g3-
493  &2*g4-6*g5-2*g6)*f1+(6*g1+18*g2+6*g3+2*g4+6*g5+2*g6)*f3+(-2*g1-6*g2
494  &-2*g3-2*g4-6*g5-2*g6)*f4+(2*g1+6*g2+2*g3+2*g4+6*g5+2*g6)*f6)*z5+((
495  &-g1-4*g2-5*g3+g4-g6)*f1+(2*g1+6*g2+2*g3+2*g4+6*g5+2*g6)*f2+(4*g1+8
496  &*g2+8*g3+2*g4+4*g5+4*g6)*f3+(-3*g1-4*g2-3*g3-3*g4-4*g5-3*g6)*f4+(-
497  &2*g1-6*g2-2*g3-2*g4-6*g5-2*g6)*f5)*z6
498  w2(ielem) = ((s4+s3)*x3+(s5+s6)*x2)*xs1440
499 !
500  s3 = ((9*g1+9*g2+12*g3+3*g4+3*g5+4*g6)*f2+(6*g1+6*g2+18*g3+2*g4+2*
501  &g5+6*g6)*f3+(-8*g1-4*g2-8*g3-4*g4-2*g5-4*g6)*f4+(-g1-5*g2-4*g3+g4-
502  &g5)*f5+(-6*g1-6*g2-18*g3-2*g4-2*g5-6*g6)*f6)*z1+((-9*g1-9*g2-12*g3
503  &-3*g4-3*g5-4*g6)*f1+(-6*g1-6*g2-18*g3-2*g4-2*g5-6*g6)*f3+(5*g1+g2+
504  &4*g3+g4-g5)*f4+(4*g1+8*g2+8*g3+2*g4+4*g5+4*g6)*f5+(6*g1+6*g2+18*g3
505  &+2*g4+2*g5+6*g6)*f6)*z2+((-6*g1-6*g2-18*g3-2*g4-2*g5-6*g6)*f1+(6*g
506  &1+6*g2+18*g3+2*g4+2*g5+6*g6)*f2+(-2*g1-2*g2-6*g3-2*g4-2*g5-6*g6)*f
507  &4+(2*g1+2*g2+6*g3+2*g4+2*g5+6*g6)*f5)*z3
508  s4 = ((8*g1+4*g2+8*g3+4*g4+2*g5+4*g6)*f1+(-5*g1-g2-4*g3-g4+g5)*
509  &f2+(2*g1+2*g2+6*g3+2*g4+2*g5+6*g6)*f3+(-3*g1-3*g2-4*g3-3*g4-3*g5-4
510  &*g6)*f5+(-2*g1-2*g2-6*g3-2*g4-2*g5-6*g6)*f6)*z4+((g1+5*g2+4*g3-g4+
511  &g5)*f1+(-4*g1-8*g2-8*g3-2*g4-4*g5-4*g6)*f2+(-2*g1-2*g2-6*g3-2*g4-2
512  &*g5-6*g6)*f3+(3*g1+3*g2+4*g3+3*g4+3*g5+4*g6)*f4+(2*g1+2*g2+6*g3+2*
513  &g4+2*g5+6*g6)*f6)*z5+((6*g1+6*g2+18*g3+2*g4+2*g5+6*g6)*f1+(-6*g1-6
514  &*g2-18*g3-2*g4-2*g5-6*g6)*f2+(2*g1+2*g2+6*g3+2*g4+2*g5+6*g6)*f4+(-
515  &2*g1-2*g2-6*g3-2*g4-2*g5-6*g6)*f5)*z6
516  s6 = ((-3*g1-6*g2-6*g3-g4-2*g5-2*g6)*f2+(-12*g1-9*g2-24*g3-4*g4-3*
517  &g5-8*g6)*f3+(8*g1+4*g2+8*g3+4*g4+2*g5+4*g6)*f4+(3*g1+6*g2+6*g3+g4+
518  &2*g5+2*g6)*f5+(4*g1+5*g2+16*g3+g5+4*g6)*f6)*z1+((3*g1+6*g2+6*g3+g4
519  &+2*g5+2*g6)*f1+(-3*g1-6*g2-6*g3-g4-2*g5-2*g6)*f3+(g1+2*g2+2*g3+g4+
520  &2*g5+2*g6)*f4+(-g1-2*g2-2*g3-g4-2*g5-2*g6)*f6)*z2+((12*g1+9*g2+24*
521  &g3+4*g4+3*g5+8*g6)*f1+(3*g1+6*g2+6*g3+g4+2*g5+2*g6)*f2+(-4*g1-g2+g
522  &5+4*g6)*f4+(-3*g1-6*g2-6*g3-g4-2*g5-2*g6)*f5+(-8*g1-8*g2-24*g3-4*g
523  &4-4*g5-12*g6)*f6)*z3
524  s5 = ((-8*g1-4*g2-8*g3-4*g4-2*g5-4*g6)*f1+(-g1-2*g2-2*g3-g4-2*g
525  &5-2*g6)*f2+(4*g1+g2-g5-4*g6)*f3+(g1+2*g2+2*g3+g4+2*g5+2*g6)*f5+(4*
526  &g1+3*g2+8*g3+4*g4+3*g5+8*g6)*f6)*z4+((-3*g1-6*g2-6*g3-g4-2*g5-2*g6
527  &)*f1+(3*g1+6*g2+6*g3+g4+2*g5+2*g6)*f3+(-g1-2*g2-2*g3-g4-2*g5-2*g6)
528  &*f4+(g1+2*g2+2*g3+g4+2*g5+2*g6)*f6)*z5+((-4*g1-5*g2-16*g3-g5-4*g6)
529  &*f1+(g1+2*g2+2*g3+g4+2*g5+2*g6)*f2+(8*g1+8*g2+24*g3+4*g4+4*g5+12*g
530  &6)*f3+(-4*g1-3*g2-8*g3-4*g4-3*g5-8*g6)*f4+(-g1-2*g2-2*g3-g4-2*g5-2
531  &*g6)*f5)*z6
532  w3(ielem) = ((s4+s3)*x3+(s5+s6)*x2)*xs1440
533 !
534  s3 = ((8*g1+4*g2+3*g3+8*g4+4*g5+3*g6)*f2+(2*g1+g2+2*g3+2*g4+g5+2*g
535  &6)*f3+(-12*g1-4*g2-4*g3-24*g4-8*g5-8*g6)*f4+(4*g1+g3+16*g4+4*g5+5*
536  &g6)*f5+(-2*g1-g2-2*g3-2*g4-g5-2*g6)*f6)*z1+((-8*g1-4*g2-3*g3-8*g4-
537  &4*g5-3*g6)*f1+(-2*g1-g2-2*g3-2*g4-g5-2*g6)*f3+(4*g1+g3-4*g5-g6)*f4
538  &+(4*g1+4*g2+2*g3+8*g4+8*g5+4*g6)*f5+(2*g1+g2+2*g3+2*g4+g5+2*g6)*f6
539  &)*z2+((-2*g1-g2-2*g3-2*g4-g5-2*g6)*f1+(2*g1+g2+2*g3+2*g4+g5+2*g6)*
540  &f2+(-2*g1-g2-2*g3-6*g4-3*g5-6*g6)*f4+(2*g1+g2+2*g3+6*g4+3*g5+6*g6)
541  &*f5)*z3
542  s4 = ((12*g1+4*g2+4*g3+24*g4+8*g5+8*g6)*f1+(-4*g1-g3+4*g5+g6)*f
543  &2+(2*g1+g2+2*g3+6*g4+3*g5+6*g6)*f3+(-8*g1-4*g2-3*g3-24*g4-12*g5-9*
544  &g6)*f5+(-2*g1-g2-2*g3-6*g4-3*g5-6*g6)*f6)*z4+((-4*g1-g3-16*g4-4*g5
545  &-5*g6)*f1+(-4*g1-4*g2-2*g3-8*g4-8*g5-4*g6)*f2+(-2*g1-g2-2*g3-6*g4-
546  &3*g5-6*g6)*f3+(8*g1+4*g2+3*g3+24*g4+12*g5+9*g6)*f4+(2*g1+g2+2*g3+6
547  &*g4+3*g5+6*g6)*f6)*z5+((2*g1+g2+2*g3+2*g4+g5+2*g6)*f1+(-2*g1-g2-2*
548  &g3-2*g4-g5-2*g6)*f2+(2*g1+g2+2*g3+6*g4+3*g5+6*g6)*f4+(-2*g1-g2-2*g
549  &3-6*g4-3*g5-6*g6)*f5)*z6
550  s6 = ((-2*g1-2*g2-g3-2*g4-2*g5-g6)*f2+(-8*g1-3*g2-4*g3-8*g4-3*g5-4
551  &*g6)*f3+(12*g1+4*g2+4*g3+24*g4+8*g5+8*g6)*f4+(2*g1+2*g2+g3+2*g4+2*
552  &g5+g6)*f5+(-4*g1-g2-16*g4-5*g5-4*g6)*f6)*z1+((2*g1+2*g2+g3+2*g4+2*
553  &g5+g6)*f1+(-2*g1-2*g2-g3-2*g4-2*g5-g6)*f3+(2*g1+2*g2+g3+6*g4+6*g5+
554  &3*g6)*f4+(-2*g1-2*g2-g3-6*g4-6*g5-3*g6)*f6)*z2+((8*g1+3*g2+4*g3+8*
555  &g4+3*g5+4*g6)*f1+(2*g1+2*g2+g3+2*g4+2*g5+g6)*f2+(-4*g1-g2+g5+4*g6)
556  &*f4+(-2*g1-2*g2-g3-2*g4-2*g5-g6)*f5+(-4*g1-2*g2-4*g3-8*g4-4*g5-8*g
557  &6)*f6)*z3
558  s5 = ((-12*g1-4*g2-4*g3-24*g4-8*g5-8*g6)*f1+(-2*g1-2*g2-g3-6*g4
559  &-6*g5-3*g6)*f2+(4*g1+g2-g5-4*g6)*f3+(2*g1+2*g2+g3+6*g4+6*g5+3*g6)*
560  &f5+(8*g1+3*g2+4*g3+24*g4+9*g5+12*g6)*f6)*z4+((-2*g1-2*g2-g3-2*g4-2
561  &*g5-g6)*f1+(2*g1+2*g2+g3+2*g4+2*g5+g6)*f3+(-2*g1-2*g2-g3-6*g4-6*g5
562  &-3*g6)*f4+(2*g1+2*g2+g3+6*g4+6*g5+3*g6)*f6)*z5+((4*g1+g2+16*g4+5*g
563  &5+4*g6)*f1+(2*g1+2*g2+g3+6*g4+6*g5+3*g6)*f2+(4*g1+2*g2+4*g3+8*g4+4
564  &*g5+8*g6)*f3+(-8*g1-3*g2-4*g3-24*g4-9*g5-12*g6)*f4+(-2*g1-2*g2-g3-
565  &6*g4-6*g5-3*g6)*f5)*z6
566  w4(ielem) = ((s4+s3)*x3+(s5+s6)*x2)*xs1440
567 !
568  s3 = ((4*g1+8*g2+3*g3+4*g4+8*g5+3*g6)*f2+(g1+2*g2+2*g3+g4+2*g5+2*g
569  &6)*f3+(-4*g1-4*g2-2*g3-8*g4-8*g5-4*g6)*f4+(-4*g2-g3+4*g4+g6)*f5+(-
570  &g1-2*g2-2*g3-g4-2*g5-2*g6)*f6)*z1+((-4*g1-8*g2-3*g3-4*g4-8*g5-3*g6
571  &)*f1+(-g1-2*g2-2*g3-g4-2*g5-2*g6)*f3+(-4*g2-g3-4*g4-16*g5-5*g6)*f4
572  &+(4*g1+12*g2+4*g3+8*g4+24*g5+8*g6)*f5+(g1+2*g2+2*g3+g4+2*g5+2*g6)*
573  &f6)*z2+((-g1-2*g2-2*g3-g4-2*g5-2*g6)*f1+(g1+2*g2+2*g3+g4+2*g5+2*g6
574  &)*f2+(-g1-2*g2-2*g3-3*g4-6*g5-6*g6)*f4+(g1+2*g2+2*g3+3*g4+6*g5+6*g
575  &6)*f5)*z3
576  s4 = ((4*g1+4*g2+2*g3+8*g4+8*g5+4*g6)*f1+(4*g2+g3+4*g4+16*g5+5*
577  &g6)*f2+(g1+2*g2+2*g3+3*g4+6*g5+6*g6)*f3+(-4*g1-8*g2-3*g3-12*g4-24*
578  &g5-9*g6)*f5+(-g1-2*g2-2*g3-3*g4-6*g5-6*g6)*f6)*z4+((4*g2+g3-4*g4-g
579  &6)*f1+(-4*g1-12*g2-4*g3-8*g4-24*g5-8*g6)*f2+(-g1-2*g2-2*g3-3*g4-6*
580  &g5-6*g6)*f3+(4*g1+8*g2+3*g3+12*g4+24*g5+9*g6)*f4+(g1+2*g2+2*g3+3*g
581  &4+6*g5+6*g6)*f6)*z5+((g1+2*g2+2*g3+g4+2*g5+2*g6)*f1+(-g1-2*g2-2*g3
582  &-g4-2*g5-2*g6)*f2+(g1+2*g2+2*g3+3*g4+6*g5+6*g6)*f4+(-g1-2*g2-2*g3-
583  &3*g4-6*g5-6*g6)*f5)*z6
584  s6 = ((-2*g1-6*g2-2*g3-2*g4-6*g5-2*g6)*f2+(-3*g1-4*g2-3*g3-3*g4-4*
585  &g5-3*g6)*f3+(4*g1+4*g2+2*g3+8*g4+8*g5+4*g6)*f4+(2*g1+6*g2+2*g3+2*g
586  &4+6*g5+2*g6)*f5+(-g1+g3-5*g4-4*g5-g6)*f6)*z1+((2*g1+6*g2+2*g3+2*g4
587  &+6*g5+2*g6)*f1+(-2*g1-6*g2-2*g3-2*g4-6*g5-2*g6)*f3+(2*g1+6*g2+2*g3
588  &+6*g4+18*g5+6*g6)*f4+(-2*g1-6*g2-2*g3-6*g4-18*g5-6*g6)*f6)*z2+((3*
589  &g1+4*g2+3*g3+3*g4+4*g5+3*g6)*f1+(2*g1+6*g2+2*g3+2*g4+6*g5+2*g6)*f2
590  &+(-g1+g3+g4+4*g5+5*g6)*f4+(-2*g1-6*g2-2*g3-2*g4-6*g5-2*g6)*f5+(-2*
591  &g1-4*g2-4*g3-4*g4-8*g5-8*g6)*f6)*z3
592  s5 = ((-4*g1-4*g2-2*g3-8*g4-8*g5-4*g6)*f1+(-2*g1-6*g2-2*g3-6*g4
593  &-18*g5-6*g6)*f2+(g1-g3-g4-4*g5-5*g6)*f3+(2*g1+6*g2+2*g3+6*g4+18*g5
594  &+6*g6)*f5+(3*g1+4*g2+3*g3+9*g4+12*g5+9*g6)*f6)*z4+((-2*g1-6*g2-2*g
595  &3-2*g4-6*g5-2*g6)*f1+(2*g1+6*g2+2*g3+2*g4+6*g5+2*g6)*f3+(-2*g1-6*g
596  &2-2*g3-6*g4-18*g5-6*g6)*f4+(2*g1+6*g2+2*g3+6*g4+18*g5+6*g6)*f6)*z5
597  &+((g1-g3+5*g4+4*g5+g6)*f1+(2*g1+6*g2+2*g3+6*g4+18*g5+6*g6)*f2+(2*g
598  &1+4*g2+4*g3+4*g4+8*g5+8*g6)*f3+(-3*g1-4*g2-3*g3-9*g4-12*g5-9*g6)*f
599  &4+(-2*g1-6*g2-2*g3-6*g4-18*g5-6*g6)*f5)*z6
600  w5(ielem) = ((s4+s3)*x3+(s5+s6)*x2)*xs1440
601 !
602  s3 = ((3*g1+3*g2+4*g3+3*g4+3*g5+4*g6)*f2+(2*g1+2*g2+6*g3+2*g4+2*g5
603  &+6*g6)*f3+(-4*g1-2*g2-4*g3-8*g4-4*g5-8*g6)*f4+(g1-g2+5*g4+g5+4*g6)
604  &*f5+(-2*g1-2*g2-6*g3-2*g4-2*g5-6*g6)*f6)*z1+((-3*g1-3*g2-4*g3-3*g4
605  &-3*g5-4*g6)*f1+(-2*g1-2*g2-6*g3-2*g4-2*g5-6*g6)*f3+(g1-g2-g4-5*g5-
606  &4*g6)*f4+(2*g1+4*g2+4*g3+4*g4+8*g5+8*g6)*f5+(2*g1+2*g2+6*g3+2*g4+2
607  &*g5+6*g6)*f6)*z2+((-2*g1-2*g2-6*g3-2*g4-2*g5-6*g6)*f1+(2*g1+2*g2+6
608  &*g3+2*g4+2*g5+6*g6)*f2+(-2*g1-2*g2-6*g3-6*g4-6*g5-18*g6)*f4+(2*g1+
609  &2*g2+6*g3+6*g4+6*g5+18*g6)*f5)*z3
610  s4 = ((4*g1+2*g2+4*g3+8*g4+4*g5+8*g6)*f1+(-g1+g2+g4+5*g5+4*g6)*
611  &f2+(2*g1+2*g2+6*g3+6*g4+6*g5+18*g6)*f3+(-3*g1-3*g2-4*g3-9*g4-9*g5-
612  &12*g6)*f5+(-2*g1-2*g2-6*g3-6*g4-6*g5-18*g6)*f6)*z4+((-g1+g2-5*g4-g
613  &5-4*g6)*f1+(-2*g1-4*g2-4*g3-4*g4-8*g5-8*g6)*f2+(-2*g1-2*g2-6*g3-6*
614  &g4-6*g5-18*g6)*f3+(3*g1+3*g2+4*g3+9*g4+9*g5+12*g6)*f4+(2*g1+2*g2+6
615  &*g3+6*g4+6*g5+18*g6)*f6)*z5+((2*g1+2*g2+6*g3+2*g4+2*g5+6*g6)*f1+(-
616  &2*g1-2*g2-6*g3-2*g4-2*g5-6*g6)*f2+(2*g1+2*g2+6*g3+6*g4+6*g5+18*g6)
617  &*f4+(-2*g1-2*g2-6*g3-6*g4-6*g5-18*g6)*f5)*z6
618  s6 = ((-g1-2*g2-2*g3-g4-2*g5-2*g6)*f2+(-4*g1-3*g2-8*g3-4*g4-3*g5-8
619  &*g6)*f3+(4*g1+2*g2+4*g3+8*g4+4*g5+8*g6)*f4+(g1+2*g2+2*g3+g4+2*g5+2
620  &*g6)*f5+(g2+4*g3-4*g4-g5)*f6)*z1+((g1+2*g2+2*g3+g4+2*g5+2*g6)*f1+(
621  &-g1-2*g2-2*g3-g4-2*g5-2*g6)*f3+(g1+2*g2+2*g3+3*g4+6*g5+6*g6)*f4+(-
622  &g1-2*g2-2*g3-3*g4-6*g5-6*g6)*f6)*z2+((4*g1+3*g2+8*g3+4*g4+3*g5+8*g
623  &6)*f1+(g1+2*g2+2*g3+g4+2*g5+2*g6)*f2+(g2+4*g3+4*g4+5*g5+16*g6)*f4+
624  &(-g1-2*g2-2*g3-g4-2*g5-2*g6)*f5+(-4*g1-4*g2-12*g3-8*g4-8*g5-24*g6)
625  &*f6)*z3
626  s5 = ((-4*g1-2*g2-4*g3-8*g4-4*g5-8*g6)*f1+(-g1-2*g2-2*g3-3*g4-6
627  &*g5-6*g6)*f2+(-g2-4*g3-4*g4-5*g5-16*g6)*f3+(g1+2*g2+2*g3+3*g4+6*g5
628  &+6*g6)*f5+(4*g1+3*g2+8*g3+12*g4+9*g5+24*g6)*f6)*z4+((-g1-2*g2-2*g3
629  &-g4-2*g5-2*g6)*f1+(g1+2*g2+2*g3+g4+2*g5+2*g6)*f3+(-g1-2*g2-2*g3-3*
630  &g4-6*g5-6*g6)*f4+(g1+2*g2+2*g3+3*g4+6*g5+6*g6)*f6)*z5+((-g2-4*g3+4
631  &*g4+g5)*f1+(g1+2*g2+2*g3+3*g4+6*g5+6*g6)*f2+(4*g1+4*g2+12*g3+8*g4+
632  &8*g5+24*g6)*f3+(-4*g1-3*g2-8*g3-12*g4-9*g5-24*g6)*f4+(-g1-2*g2-2*g
633  &3-3*g4-6*g5-6*g6)*f5)*z6
634  w6(ielem) = ((s4+s3)*x3+(s5+s6)*x2)*xs1440
635 !
636  ENDDO
637 !
638  ELSE IF (icoord.EQ.3) THEN
639 !-----------------------------------------------------------------------
640 ! DERIVATIVE WRT Z
641 !
642  DO ielem = 1 , nelem
643 !
644  i1 = ikle1(ielem)
645  i2 = ikle2(ielem)
646  i3 = ikle3(ielem)
647  i4 = ikle4(ielem)
648  i5 = ikle5(ielem)
649  i6 = ikle6(ielem)
650 !
651  f1 = f(i1)
652  f2 = f(i2)
653  f3 = f(i3)
654  f4 = f(i4)
655  f5 = f(i5)
656  f6 = f(i6)
657 !
658  g1 = g(i1)
659  g2 = g(i2)
660  g3 = g(i3)
661  g4 = g(i4)
662  g5 = g(i5)
663  g6 = g(i6)
664 !
665 ! REAL COORDINATES OF THE POINTS OF THE ELEMENT
666 !
667 ! X2 = X(I2) - X(I1)
668 ! X3 = X(I3) - X(I1)
669 ! Y2 = Y(I2) - Y(I1)
670 ! Y3 = Y(I3) - Y(I1)
671 !
672  x2 = x(ielem,2)
673  x3 = x(ielem,3)
674  y2 = y(ielem,2)
675  y3 = y(ielem,3)
676 !
677  xmu = xs720*(x2*y3-x3*y2)
678 !
679 ! VC11PP_Z (FROM MAPLE)
680 !
681  w1(ielem) = xmu*(
682  & (12*g1+4*g2+4*g3+6*g4+2*g5+2*g6)*(f4-f1)
683  & +(4*g1+4*g2+2*g3+2*g4+2*g5+g6)*(f5-f2)
684  & +(4*g1+2*g2+4*g3+2*g4+g5+2*g6)*(f6-f3)
685  & )
686  w2(ielem) = xmu*(
687  & (4*g1+4*g2+2*g3+2*g4+2*g5+g6)*(f4-f1)
688  & +(4*g1+12*g2+4*g3+2*g4+6*g5+2*g6)*(f5-f2)
689  & +(2*g1+4*g2+4*g3+g4+2*g5+2*g6)*(f6-f3)
690  & )
691  w3(ielem) = xmu*(
692  & (4*g1+2*g2+4*g3+2*g4+g5+2*g6)*(f4-f1)
693  & +(2*g1+4*g2+4*g3+g4+2*g5+2*g6)*(f5-f2)
694  & +(4*g1+4*g2+12*g3+2*g4+2*g5+6*g6)*(f6-f3)
695  & )
696  w4(ielem) = xmu*(
697  & (6*g1+2*g2+2*g3+12*g4+4*g5+4*g6)*(f4-f1)
698  & +(2*g1+2*g2+g3+4*g4+4*g5+2*g6)*(f5-f2)
699  & +(2*g1+g2+2*g3+4*g4+2*g5+4*g6)*(f6-f3)
700  & )
701  w5(ielem) = xmu*(
702  & (2*g1+2*g2+g3+4*g4+4*g5+2*g6)*(f4-f1)
703  & +(2*g1+6*g2+2*g3+4*g4+12*g5+4*g6)*(f5-f2)
704  & +(g1+2*g2+2*g3+2*g4+4*g5+4*g6)*(f6-f3)
705  & )
706  w6(ielem) = xmu*(
707  & (2*g1+g2+2*g3+4*g4+2*g5+4*g6)*(f4-f1)
708  & +(g1+2*g2+2*g3+2*g4+4*g5+4*g6)*(f5-f2)
709  & +(2*g1+2*g2+6*g3+4*g4+4*g5+12*g6)*(f6-f3)
710  & )
711 !
712  ENDDO
713 !
714  ELSE
715 !
716 !-----------------------------------------------------------------------
717 !
718  WRITE(lu,201) icoord
719  201 FORMAT(1x,'VC11PP (BIEF) : IMPOSSIBLE COMPONENT ',
720  & 1i6,' CHECK ICOORD')
721  CALL plante(1)
722  stop
723 !
724  ENDIF
725 !-----------------------------------------------------------------------
726 ! ERROR
727 !
728  ELSE
729 !-----------------------------------------------------------------------
730  WRITE(lu,1101) ielmf,sf%NAME
731  WRITE(lu,1201) ielmg,sg%NAME
732  WRITE(lu,1301)
733  CALL plante(1)
734  stop
735  1101 FORMAT(1x,'VC11PP (BIEF) :',/,
736  & 1x,'DISCRETIZATION OF F:',1i6,
737  & 1x,'REAL NAME: ',a6)
738  1201 FORMAT(1x,'DISCRETIZATION OF G:',1i6,
739  & 1x,'REAL NAME: ',a6)
740  1301 FORMAT(1x,'CASE NOT IMPLEMENTED')
741 !
742  ENDIF
743 !
744 !-----------------------------------------------------------------------
745 !
746  RETURN
747  END
subroutine vc11pp(XMUL, SF, SG, F, G, X, Y, Z, IKLE1, IKLE2, IKLE3, IKLE4, IKLE5, IKLE6, NELEM, NELMAX, W1, W2, W3, W4, W5, W6, ICOORD)
Definition: vc11pp.f:9
Definition: bief.f:3