[in] | nelem | FORMUL String with formula of vector |
[in] | IKLE1 | First point of tetrahedra |
[in] | IKLE2 | Second point of tetrahedra |
[in] | IKLE3 | Third point of tetrahedra |
[in] | IKLE4 | Fourth point of tetrahedra |
[in] | NELEM | Number of elements |
[in] | NELEM2 | Number of 2d elements (case specad) |
[in] | NELMAX | Maximum number of elements |
[in] | SPECAD | If yes, special advection field, see above |
[in] | SU | Bief_obj structure of u |
[in] | SV | Bief_obj structure of v |
[in] | SW | Bief_obj structure of w |
[in] | U | Function used in the vector formula |
[in] | V | Function used in the vector formula |
[in] | W | Function used in the vector formula |
[out] | W1 | Result in non assembled form |
[out] | W2 | Result in non assembled form |
[out] | W3 | Result in non assembled form |
[out] | W4 | Result in non assembled form |
[in] | X | Abscissae of points in the mesh |
[in] | Y | Ordinates of points in the mesh |
[in] | XMUL | Multiplication coefficient |
[in] | Z | Elevations of points |
[in] | nelmax | FORMUL String with formula of vector |
[in] | IKLE1 | First point of tetrahedra |
[in] | IKLE2 | Second point of tetrahedra |
[in] | IKLE3 | Third point of tetrahedra |
[in] | IKLE4 | Fourth point of tetrahedra |
[in] | NELEM | Number of elements |
[in] | NELEM2 | Number of 2d elements (case specad) |
[in] | NELMAX | Maximum number of elements |
[in] | SPECAD | If yes, special advection field, see above |
[in] | SU | Bief_obj structure of u |
[in] | SV | Bief_obj structure of v |
[in] | SW | Bief_obj structure of w |
[in] | U | Function used in the vector formula |
[in] | V | Function used in the vector formula |
[in] | W | Function used in the vector formula |
[out] | W1 | Result in non assembled form |
[out] | W2 | Result in non assembled form |
[out] | W3 | Result in non assembled form |
[out] | W4 | Result in non assembled form |
[in] | X | Abscissae of points in the mesh |
[in] | Y | Ordinates of points in the mesh |
[in] | XMUL | Multiplication coefficient |
[in] | Z | Elevations of points |
[in] | nelem2 | FORMUL String with formula of vector |
[in] | IKLE1 | First point of tetrahedra |
[in] | IKLE2 | Second point of tetrahedra |
[in] | IKLE3 | Third point of tetrahedra |
[in] | IKLE4 | Fourth point of tetrahedra |
[in] | NELEM | Number of elements |
[in] | NELEM2 | Number of 2d elements (case specad) |
[in] | NELMAX | Maximum number of elements |
[in] | SPECAD | If yes, special advection field, see above |
[in] | SU | Bief_obj structure of u |
[in] | SV | Bief_obj structure of v |
[in] | SW | Bief_obj structure of w |
[in] | U | Function used in the vector formula |
[in] | V | Function used in the vector formula |
[in] | W | Function used in the vector formula |
[out] | W1 | Result in non assembled form |
[out] | W2 | Result in non assembled form |
[out] | W3 | Result in non assembled form |
[out] | W4 | Result in non assembled form |
[in] | X | Abscissae of points in the mesh |
[in] | Y | Ordinates of points in the mesh |
[in] | XMUL | Multiplication coefficient |
[in] | Z | Elevations of points |
[in] | npoin2 | FORMUL String with formula of vector |
[in] | IKLE1 | First point of tetrahedra |
[in] | IKLE2 | Second point of tetrahedra |
[in] | IKLE3 | Third point of tetrahedra |
[in] | IKLE4 | Fourth point of tetrahedra |
[in] | NELEM | Number of elements |
[in] | NELEM2 | Number of 2d elements (case specad) |
[in] | NELMAX | Maximum number of elements |
[in] | SPECAD | If yes, special advection field, see above |
[in] | SU | Bief_obj structure of u |
[in] | SV | Bief_obj structure of v |
[in] | SW | Bief_obj structure of w |
[in] | U | Function used in the vector formula |
[in] | V | Function used in the vector formula |
[in] | W | Function used in the vector formula |
[out] | W1 | Result in non assembled form |
[out] | W2 | Result in non assembled form |
[out] | W3 | Result in non assembled form |
[out] | W4 | Result in non assembled form |
[in] | X | Abscissae of points in the mesh |
[in] | Y | Ordinates of points in the mesh |
[in] | XMUL | Multiplication coefficient |
[in] | Z | Elevations of points |