The TELEMAC-MASCARET system  trunk
remseg.f File Reference

Go to the source code of this file.

## Functions/Subroutines

subroutine remseg (X, XA, TYPEXA, B, GLOSEG, NSEG, NPOIN, DITR, COPY)

## ◆ remseg()

 subroutine remseg ( double precision, dimension(npoin), intent(inout) X, double precision, dimension(nseg,*), intent(in) XA, character(len=1), intent(in) TYPEXA, double precision, dimension(npoin), intent(in) B, integer, dimension(nseg,2), intent(in) GLOSEG, integer, intent(in) NSEG, integer, intent(in) NPOIN, character(len=1), intent(in) DITR, logical, intent(in) COPY )
Parameters
 [in] npoin [out] B Right-hand side of the linear system to be solved [in] COPY If .true. b is copied into x to start with [in] DITR Character, if 'd' : direct matrix a considered 'T' : TRANSPOSED MATRIX A CONSIDERED [in] GLOSEG First and second point of segments [in] NPOIN Number of points [in] NSEG Number of segments [in] TYPEXA Type of off-diagonal terms TYPEXA = 'Q' : ANY VALUE TYPEXA = 'S' : SYMMETRIC TYPEXA = '0' : ZERO [out] X Solution of the system ax = b [out] XA Off-diagonal terms of the matrix [in] nseg [out] B Right-hand side of the linear system to be solved [in] COPY If .true. b is copied into x to start with [in] DITR Character, if 'd' : direct matrix a considered 'T' : TRANSPOSED MATRIX A CONSIDERED [in] GLOSEG First and second point of segments [in] NPOIN Number of points [in] NSEG Number of segments [in] TYPEXA Type of off-diagonal terms TYPEXA = 'Q' : ANY VALUE TYPEXA = 'S' : SYMMETRIC TYPEXA = '0' : ZERO [out] X Solution of the system ax = b [out] XA Off-diagonal terms of the matrix

Definition at line 7 of file remseg.f. Here is the call graph for this function: Here is the caller graph for this function: